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Abstract: Since 1990, increases in American black bear (Ursus americanus) population and

distribution in the Lower Peninsula of Michigan, USA, have led to positive trends in black bear

harvests, sightings, and nuisance reports. Policy makers and wildlife managers can prepare for

the difficult task of managing future bear–human interactions by using resource selection

models to assess bear habitat selection and predict future bear range expansion. We modeled

habitat selection by black bears in the northern Lower Peninsula of Michigan using 6

environmental variables based on radiotelemetry locations from 1991–2000 for 20 males and 35

females. We developed Bayesian random effects discrete-choice models for males and females
separately to estimate probability of bear selection of grid cells at 3 spatial resolutions (1 km2,

4 km2, 9 km2). These models weight individual bears and their relocations, allowing inference

about both individual and population-level selection characteristics. We assessed goodness-of-fit

of individual models using a Bayesian P value that estimated deviance between a simulated

dataset and the observed dataset. Models for males at the 9-km2 resolution and for females at 4-

km2 resolution fit our data better than others; both indicated that locations of bears were

negatively associated with water, small and medium roads, mean patch size, patch size

coefficient of variation, edge density, developed land-use, and non-forested wetlands, and
positively associated with Shannon’s diversity index, aspen (Populus spp.), and forested

wetlands. Furthermore, the variability in selection by individual female bears for non-forested

wetland and individual male bears for agriculture was large relative to the variability in selection

of other land-use or land-cover types. Male bears had more heterogeneity with respect to

selection of land-use or land-cover types than female bears. There were significant correlations

between male bear age and their respective selection parameter estimates for small roads,

medium roads, and developed land-use. Running Bayesian random effects discrete-choice

models at multiple resolutions accounted for variability due to unequal sample sizes and bear
behavior, and demonstrate the utility of the Bayesian framework for bear management

purposes.
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Trend information since 1990, as indicated by

American black bear (Ursus americanus, hereafter,

bear) harvest reports, sightings, and nuisance re-

ports, demonstrates that bear numbers have been

increasing and expanding their range in Michigan’s

Lower Peninsula. Analysis of bear distribution

through time supports the conclusion that the bear

population in Michigan will likely expand from the

northern Lower Peninsula (NLP) to the southern

Lower Peninsula in the future (Etter 2002). A larger

population of bears throughout the state presents

several unique opportunities for state and federal

wildlife management agencies, including the poten-

tial to increase recreational wildlife viewing and4cartern7@msu.edu
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sport hunting, both of which are significant indus-

tries in Michigan’s economy (US Department of the

Interior 2006).

However, an increase and southward expansion of

Michigan’s bear population will present difficult

challenges for wildlife agencies as well. If current

patterns of human land-use changes continue, forest

acreage in Michigan could decrease 2 to 7% and

developed areas could increase by 178% by 2040

(Public Service Consultants 2001). The expansion of

human land uses coupled with bear population

growth will likely increase bear–human conflicts, a

trend occurring in several places in the eastern

United States (Carr and Burguess 2001, Ternent

2005). Such conflicts, although rarely involving

human injury or death, often have economic

impacts. Thus, modeling bear habitat selection may

provide useful information on the distribution and

dynamics of bear populations, enabling wildlife

management agencies to plan for bear–human

interactions accordingly.

Discrete-choice models are well suited to modeling

the aggregate statistical properties of a bear popu-

lation over large spatial extents. The underlying

theory of discrete-choice is derived from economic

theory that suggests consumers choose some product

over others to maximize their satisfaction (Cooper

and Millspaugh 1999). McCracken et al. (1998),

Cooper and Millspaugh (1999), and Manly et al.

(2002) modified and extended the application of

discrete-choice models to wildlife studies of resource

selection, which have since been used to model the

likelihood of habitat use by spotted owls (Strix

occidentalis; McDonald et al. 2006) and caribou

calves (Rangifer tarandus; Thomas et al. 2006), as

well as the tendency of female black bears to stay in

the same habitat type (Ramsey and Usner 2003). In

discrete-choice modeling, the probability that an

individual bear will select a patch of land (not

confined to a specific habitat type) relative to all

other available patches is modeled as a discrete-

choice from a choice set. Discrete-choice models

allow each patch of the choice set to be characterized

by both categorical and continuous variables

(McCracken et al. 1998, Thomas et al. 2006).

Habitat selection analyses typically do not incor-

porate individual heterogeneity in resource selection

adequately when determining population-level selec-

tion criteria. For instance, some studies average

individual parameters to estimate population-level

selection (Glenn et al. 2004). If the animals under

study have differing numbers of relocations (e.g.,

telemetry locations), such averaging would lead to

incorrect calculation of error terms. Other studies

use equal-sized subsets of animal relocation data to

estimate population-level selection (Miller et al.

2000), which wastes relocation data that are infor-

mative, hard to collect, and may have otherwise

improved selection parameter estimation. A model

with random effects can weight individual bears

based on the number of relocations, and in doing so,

account for individual heterogeneity when estimat-

ing population-level selection (Gillies et al. 2006). As

a result, inferences including valid error terms can be

made about individual and population-level selec-

tion characteristics (Thomas et al. 2006). Measuring

individual animal habitat selection, in addition to

population-level selection, enables wildlife research-

ers and managers to explore the ecological relation-

ships among landscape features and specific animal

characteristics. This is particularly useful in evaluat-

ing wildlife–habitat relationships with respect to life-

history stage, which in turn can help predict the

demographic response of an animal population to a

set of landscape features. Random effects have been

employed in wildlife studies, including models of

demographic change in spotted owls (Clark 2003),

population trends of harbor seals (Phoca vitulina;

Ver Hoef and Frost 2003), and habitat selection by

cerulean warblers (Dendroica cerulea) across multi-

ple spatial scales (Link and Sauer 2002).

Bayesian analysis is well suited for models with

random effects because all parameters are treated as

random variables with probability distributions

(Ellison 1996, Link et al. 2002). Ecologists are

increasingly using Bayesian statistical inference to

estimate habitat selection parameters (Ellison 2004).

However, in a Bayesian framework, the complexity

and high dimensionality of models with random

effects make direct computation of selection param-

eter estimates unfeasible. Recently, software pack-

ages like WinBUGS (http://www.mrc-bsu.cam.ac.

uk/bugs) have employed a Bayesian framework and

used Markov Chain Monte Carlo (MCMC) simula-

tions to estimate parameter distributions (Lunn et al.

2000).

The primary objective of this research was to

create and apply a model that quantified how

various environmental attributes influence bear (at

individual and population-level) habitat selection

at a landscape scale. We then use this model to

estimate and map the likelihood of habitat selection
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throughout the NLP. We also use the model results

to explore how habitat selection varies with respect

to individual animal age and sex.

Bear radiotelemetry location data were collected

throughout the NLP by the Michigan Department of

Natural Resources, 1991–2000. In addition, data on

environmental and habitat attributes in Michigan

that may be important to bear populations were

collected or, in some cases, derived. Bayesian

random effects discrete choice models were used to

model bear selection of grid cells at 3 spatial

resolutions: 1 km2, 4 km2, and 9 km2. Different

resolutions were used to evaluate model results for

sensitivity to scale. The GIS model predictions also

indicated spatial relationships (proximity and dis-

persion) between preferable habitats across the

landscape.

Study area
Bears were trapped and radiocollared in the NLP

of Michigan, which encompassed 47,120 km2 and

included 33 counties (Fig. 1). The NLP is in the

Northern Lacustrine-Influenced Region of Lower

Michigan and is distinguished from the southern

Lower Peninsula by having cooler temperatures

throughout the year and a shorter and more variable

growing season. Precipitation is more uniform across

the state than temperature (Barnes and Wagner

2004).

Approximately 12,981km2 (27.5%) of the NLP is

publicly owned (national forests, state parks, wildlife

refuges). The land use and land cover of the NLP

comprised 15% agriculture, 16% upland non-forest-

ed (low density trees, upland shrub, and herbaceous

open land), 17% northern hardwood and mixed

hardwood (upland deciduous, mixed upland decid-

uous, upland mixed forest), 9% oak (dominated by

Quercus spp.), 10% aspen (dominated by Populus

spp.), 9% pine (dominated Pinus spp.), 11% forested

wetland (lowland deciduous forest, lowland conifer-

ous forest, lowland mixed forest), 6% non-forested

wetland (lowland shrub, emergent wetland, floating

aquatic), and 7% other. The land use and land cover

of the region has changed considerably since the

middle of the 19th century because of intensive

logging for white pine (Pinus spp.), hemlock (Tsuga

spp.), and northern hardwoods. Following this

intensive logging were catastrophic fires that addi-

tionally altered the land cover. For this reason, early

successional forest types including aspen and birch

(Betula spp.) forests were more prevalent during the

study than they were in the middle of the 19th

century (Barnes and Wagner 2004).

Methods
Radiotelemetry and home range estimation

During 1991–2000, the Michigan Department of

Natural Resources (MDNR) captured bears

throughout the NLP in barrel traps or in winter

dens (Etter 2002). Bears were fitted with radiocollars

equipped with a time-delayed mortality switch.

MDNR field staff attempted to collect a location

for each bear no less than once/2 weeks during the

non-denning season (Apr–Nov). Bears were located

during daylight hours at intervals of at least several

days. Bears were located to the nearest 16 ha using a

GPS unit from a fixed-winged aircraft or triangu-

lated from the ground using a hand-held yagi

antenna. Triangulated locations were determined

using a minimum of 2 radiotelemetry bearings with

the maximum likelihood estimator in LOCATE II

(Nams 1990). Locations with error polygons .16 ha

were removed from analysis, as were bears ,2 years

old because they were likely correlated with locations

Fig. 1. Aggregate home range calculated separately
for male and female American black bears by
combining 95% kernel home ranges of individual
bears. Kernel home ranges calculated from radiote-
lemetry locations collected 1991–2000 in the north-
ern Lower Peninsula of Michigan, USA.

BLACK BEAR HABITAT SELECTION IN MICHIGAN N Carter et al. 59

Ursus 21(1):57–71 (2010)



of their mothers. Using these criteria, 2,670 radio-

telemetry locations from 35 females and 1,408

locations from 20 males (Etter 2002:Fig 1) qualified

for inclusion in our models. The MDNR estimated

the ages for all females and for 19 of 20 males using a

cross section of a pre-molar tooth collected at

capture (Willey 1974). We calculated the mean age

of each bear across the years contributing radiote-

lemetry data.

We estimated home range size for each bear using

the kernel density estimator tool from HawthsTools

extension within ESRI’s ArcGIS software program

(ESRI 2002). We mapped 95% home range areas

using a fixed kernel with a least-squares cross-

validation smoothing parameter. For home range

estimation, we included only bears with at least 30

locations because that sample size is required for

dependable fixed kernel estimates of home range size

(Seaman et al. 1999). Although sample size should be

.30 for accurate home range estimation, small

samples do not disqualify application of the discrete

choice model itself, which can use any number of

observations. We used the union of home ranges

among males and females to represent available

habitat to all bears of each sex. We used separate

models for males and females because of their

different habitat requirements and behavior (Clark

et al. 1993).

Model resolution and data preparation

Model resolution. We chose grids with cell

resolutions of 1 km2, 4 km2, and 9 km2 to

correspond approximately with ranges of daily bear

movements (1, 2, 3 km) identified from previous

black bear studies (Amstrup and Beecham 1976, Alt

et al. 1980). We overlaid these grids on home range

coverages of male and female bears using ArcGIS

(ESRI 2002). For female bears we used 2,856 (1 km2),

1,467 (4 km2), and 990 (9 km2) grid cells, and for

males we used 2,040 (1 km2), 1,290 (4 km2), and

1,088 (9 km2) grid cells. We used 6 broad environ-

mental characteristics in the model, subdivided into

9 categorical and 13 continuous covariates (Table 1).

Results from the models at all 3 resolutions were

compared to provide additional information on bear

selection criteria and model limitations.

Land use and land cover (LULC). LULC is a

crucial determinant of bear presence because of its

association with food abundance and den selection

(Rogers and Allen 1987, Clark et al. 1993, van

Manen and Pelton 1997). We obtained a Lower

Peninsula land-cover dataset with 30 m resolution

for the year 2001 developed by the Forest, Mineral,

and Fire Management Division of the MDNR as

part of the Integrated Forest Monitoring, Assess-

ment, and Prescription (IFMAP) project. We reclas-

sified the original 32 cover classes into 9 cover classes

relevant to bear biology: agriculture, upland non-

forested, northern hardwood and mixed hardwood,

oak, aspen, pine, forested wetlands, non-forested

wetlands, and developed land. LULC proportions

were summarized for each of the model grid cells at

all 3 resolutions. We assigned each grid cell a

categorical value associated with the majority LULC

(e.g., aspen, agriculture, etc.).

Hydrological features. Bears frequently use

water bodies for drinking and cooling down (Rogers

and Allen 1987). We created a raster dataset with a

resolution of 30 m (consistent with LULC image

resolution) that combined lake and stream data

throughout the NLP. We reclassified this raster layer

so that each raster cell represented either presence or

absence of water. We tabulated the area of water for

each of the model grid cells at all 3 target resolutions.

Roads. Bears sometimes use logging, service, and

unpaved roads as travel routes or as food sources

(soft mast and green vegetation along roadside:

Manville 1983). Frequently traveled roads, however,

result in high numbers of vehicle-related bear deaths

(Rogers and Allen 1987). We used a vector dataset

(Michigan Department of Information Technology

2002) divided into 3 categories (large, medium, and

small) based on approximate size and traffic volume.

We converted the reclassified road layer into a 5-m

resolution raster dataset and calculated total road

length for each road category for each of the model

grid cells at all target resolutions.

Topography. We assumed that bear energy

expenditure increases as the variability in terrain

slope increases. We hypothesized that bears avoid

areas with greater slope variability to minimize

energy expenditure. We derived slope data from a

30-m digital elevation model for the State of

Michigan using ArcGIS (ESRI 2002). We calculated

the standard deviation of slope (30-m resolution) for

each of the model grid cells at all target resolutions.

Human population. Census block population

estimates are very coarse and not the optimal

method of depicting human population densities

relative to bear presence. For instance, some areas

within a census block are populated while others are

not (Wright 1936). We reclassified the LULC raster
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dataset into 5 categories: urban development,

agriculture, forested, open, and water. We used the

census block data to calculate the proportion of

human population within these 5 categories to be

0.90, 0.07, 0.02, 0.01, and 0.0, respectively. These

proportions were assigned to each of the reclassified

LULC grid cells. We derived the number of people/

LULC grid cell (i.e., number of people/30 m) by

multiplying the grid cell proportion and the census

block population estimates (see Eicher and Brewer

2001). We summed population density to calculate

human population for each of the model grid cells at

all target resolutions.

Landscape patterns. Landscape pattern metrics

provide information on patch (i.e., LULC type)

composition, diversity, and structure that may

influence the ways in which bears travel and select

various areas over the landscape. We used the Patch

Analyst extension (Rempel 2008) within ESRI’s

ArcView 3.3 (ESRI 2002) to calculate the number

of patches, mean patch size, patch size coefficient of

variation (CV), edge density, area-weighted mean

shape index, Shannon’s diversity index, and Shan-

non’s evenness index for each of the model grid cells

at all target resolutions. Mean patch size and CV

have implications for food abundance (low patch

size CV reflects homogeneity of land cover type sizes,

suggesting relatively equitable distribution of food).

The number of patches and Shannon’s diversity

index have implications for food variability (e.g.,

different land covers/land uses provide different

foods and higher values of each suggest a greater

variability). Edge density, area-weighted mean shape

index, and Shannon’s evenness index reflect land-

scape features and patterns that influence the way

bears select areas (e.g., avoidance of areas with

Table 1. Covariates, variable type, and calculation used to parameterize male and female American black bear
habitat selection models based on data from 1991–2000. Covariates were measured across the northern Lower
Peninsula of Michigan at grid resolutions of 1 km2, 4 km2, and 9 km2.

Variable Covariate Covariate type Calculation per grid cell

Hydrological features

Water area Continuous Sum, m

Topography

Slope deviation Continuous Slope standard deviation, degrees

Road length

Large volume road Continuous Sum, m

Medium volume road Continuous Sum, m

Small volume road Continuous Sum, m

Human population

Human density Continuous Sum of density from 30 m raster cells

Landscape metric

Number of patches Continuous Number of land cover patches

Mean patch size Continuous Mean land cover patch size

Patch size coefficient of variation Continuous Standard deviation of mean patch size

Edge density Continuous Total patch edge/total land area per cell

Area-weighted mean shape index Continuous 1 when all patches are circular; increases with

increasing patch shape irregularity

Shannon’s diversity index Continuous 0 when there is only one patch in the landscape;

increases as number of patch types increases

Shannon’s evenness Index Continuous 0 when patches are clumped; approaches 1 when

evenly distributed

Land cover Majority land cover type

Human development Categorical

Agriculture Categorical

Upland non-forested Categorical

Northern hardwood and mixed hardwood Categorical

Oak Categorical

Aspen Categorical

Pine Categorical

Forested wetland Categorical

Non-forested wetland Categorical
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significant landscape fragmentation is indicated by

higher values of edge density, selection of areas with

more escape and refuge cover is indicated by higher

values of shape index, and selection of areas with

concentrated food resources is indicated by lower

values of Shannon’s evenness index).

Bayesian discrete-choice model specification

We applied a discrete-choice function in the form

of a multinomial logit that assumed that individual

bears independently select a single patch of land

(grid cell) from a ‘choice set’ of mutually exclusive

patches (all grid cells in model area) that are all

equally available (McCracken et al. 1998). The

collection of all grid cells available to bears of each

sex, S, depended on model resolution (females: 2,856

at 1-km2 resolution, 1,467 [4 km2], 990 [9 km2] grid

cells; males: 2,040 [1 km2], 1,290 [4 km2], and 1,088

grid cells [9 km2]). The probability of use of grid cell

s by animal i was

pi sð Þ~ exp bixsð ÞP
r[S

exp bixrð Þ ð1Þ

where:

Xs 5 a k-dimensional vector of covariate attributes

(area of water, slope variability, area of

agriculture land-use, etc.) characterizing grid

cell s, and

bi 5 a k-dimensional vector of covariate selection

parameters for animal i.

The probability that the jth independent relocation

of bear i occurs in grid cell sij was pi sij

� �
. For grid cell

sij, the likelihood for all observed relocations was

P
m

i~1
P
ni

j~1
pi sij

� �
ð2Þ

where m represents all bears and ni represents all

independent relocations for bear i. Standard devia-

tion across individuals was calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm
i~1

^
bi{

^
bi

� �2

m m{1ð Þ

vuuuut ð3Þ

where:

^
bi 5 selection parameter estimate

m 5 number of bears

The goal of using Bayesian random effects models

is to make probability statements on individual and

population-level selection parameters given the

observational data (radiotelemetry locations). In

Bayesian methodology, all parameters (individual

bear and population-level) must have a ‘prior’

distribution defined. Priors reflect our initial state

of knowledge on the likely values of selection

parameters (Sauer et al. 2005). Selection parameter

values of interest (estimated mean and variance) are

described by ‘posterior’ probability distributions. In

each model iteration, individual bear selection

parameters, sampled from prior distributions, were

used in the discrete-choice function (Eq. 1) to modify

individual bear posterior distributions according to

an internal WinBUGS algorithm (Link et al. 2002).

Because individual bears were considered to be

random samples (i.e., random effects) from the

whole population, the individual bear prior distri-

butions were defined by population-level mean and

user-defined variance. Population-level selection

parameter priors were defined in this study by

independent normal distributions with mean zero

and variance 100 to express our ignorance of prior

distribution (Thomas et al. 2006). Through this

hierarchical information sharing, population-level

selection parameters account for uncertainty in

individual bear selection parameters via differing

animal relocations and describe individual and

population-level selection with valid error terms.

Using WinBUGS, we ran all models using 24,000

iterations in a single Markov chain with a burn-in of

4,000 iterations. Individual and population-level

selection parameter estimates, posterior distribu-

tions, and validation values were calculated from

the last 20,000 iterations. The number of burn-in

iterations and parameter convergence were deter-

mined using suggestions from Raftery and Lewis

(1992).

Model fit

We assessed goodness-of-fit of each model using a

Bayesian P that estimated deviance between the

observed dataset and the simulated dataset (from the

MCMC samplings). We calculated deviance using

D ss,soð Þ~2:L ss hjð Þ{2:L so hjð Þ, ð4Þ

where:

ss 5 simulated data

so 5 observed data
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L 5 log-likelihood for the discrete choice

model

h 5 vector of parameters

WinBUGS generated a simulated likelihood of

selection at each grid cell based on parameter values

at each iteration of the MCMC algorithm and

compared that likelihood to observed likelihood

from the data. Bayesian P was estimated by

measuring the proportion of iterations in which the

simulated likelihoods exceeded the observed likeli-

hoods. A good model fit has P , 0.5 (equal

proportion of simulated likelihoods greater and less

than the observed likelihoods), whereas a poorly fit

model has P , 0.05 or P . 0.95 (Thogmartin et al.

2004).

Evaluating selection parameter estimates

We evaluated covariate parameter significance by

examining 95% Bayesian credibility intervals pro-

duced by WinBUGS. We interpreted Bayesian

credibility intervals as bounded distributions within

which 95% of potential parameter values will fall

(Ellison 1996). If those distributions included zero,

we interpreted covariate parameter estimates as not

significant. We used Spearman’s rank correlation

analysis to test for correlations between significant

covariate selection parameter estimates and mean

bear age.

Mapping population-level habitat selection

To calculate a relative probability of selection for

each grid cell, we used median values of population-

level selection parameter estimates from the best

fit (i.e., Bayesian P closest to 0.5) models and

calculated the number of grid cells with selection

probabilities greater than the probability of random-

use. To apply our model to the entire NLP, we

calculated selection likelihood for each grid cell

by calculating habitat suitability of each grid cell

using just the equation in the numerator of the

discrete-choice function (Eq. 1). We divided the

suitability value for each grid cell by mean grid

cell suitability value across the NLP. After dividing

each grid cell by mean suitability value, those

grid cells with selection likelihood ,1 were consid-

ered not-preferred and those with selection likeli-

hood .1 were considered preferred. Finally, pre-

ferred grid cells (.1) for males and females were

combined to illustrate preferable habitat to bears in

the NLP.

Results
Observations of female bears varied from 30 to

326 (x 5 76); observations of male bears varied from

30 to 236 (x 5 70). Mean kernel home range for the

35 females was 227 km2 (SD 5 810.2 km2) and mean

kernel home range for the 20 males was 606 km2 (SD

5 740.3 km2). Distributions of home range sizes

were heavily skewed because of extreme home range

sizes of a single male (3,283 km2) and female

(4,922 km2). With the extreme cases removed, mean

kernel home range size for females was 89.2 km2 (SD
5 92 km2) and mean kernel home range size for

males was 465 km2 (SD 5 424 km2). The mean

kernel home range of females was significantly

smaller than males (t 5 3.718, 18.946 df, P 5 0.001)

Simulated data from the 4 km2 female model was

the best fit (Bayesian P closest to 0.50) to the

observed data (1 km2: 0.65; 4 km2: 0.56; 9 km2: 0.61),

whereas the best fit male model was based on 9 km2

data (1 km2: 0.71; 4 km2: 0.66; 9 km2: 0.56). Both

female and male models indicated that population-

level locations of bears were negatively associated
with water, small and medium roads, mean patch

size, patch size CV, edge density, developed land-

cover, and non-forested wetlands. They were posi-

tively associated with Shannon’s diversity index,

aspen, and forested wetlands. Locations of females

were negatively associated with human population

and positively associated with area-weighted mean

shape index and northern hardwood and mixed

hardwood. In contrast, locations of male were

negatively associated with Shannon’s evenness index

(Table 2).

Among statistically significant covariates, median

parameter estimates of individual bear selection were

similar to the population-level selection parameter

estimates of significant covariates. Most standard

deviations of the individual selection parameter

estimates for each covariate were smaller (females:

20/22 covariates, males: 21/22 covariates) than the

population-level selection parameter estimates (Ta-

ble 3). This is because the population-level estimates

accounted for error associated with differing animal

relocations (Thomas et al. 2006). In the female
model, standard deviations of individual bear

selection parameter estimates were highest for edge

density and non-forested wetland and lowest for

medium roads and developed land cover. In the male

model, standard deviations were highest for human

population and agriculture and lowest for Shannon’s

diversity index and aspen (Table 3, Fig. 2). Some
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individual bears for each model had outlying and

extreme parameter estimates (Fig. 2). We identified

17 females and 4 males that had an outlying

parameter estimate (defined as .1.5 times beyond

the interquartile range, Fig. 2) for at least 1

parameter.

Mean male age was 4.0 years (n 5 19), and mean

female age was 5.3 years (n 5 35). Male age was

negatively correlated with covariate selection param-

eter estimates for small roads (Spearman’s rank r 5

20.681, P 5 0.001) and developed land-uses (r 5

20.551, P 5 0.015), and positively correlated with

medium roads (r 5 0.577, P 5 0.01). We found no

significant correlation between female bear age and

covariate selection parameter estimates.

Selection likelihood maps within the modeling

region (i.e., aggregate home range) indicated that

15.7% (199/1,268) of 4-km2 grid cells were selected

more often than random by females and 25.6% (222/

866) of 9-km2 grid cells were selected more often

than random by males. Selection likelihood maps of

the entire NLP indicated that 11.2% (1,294/11,456)

of 4-km2 grid cells had female bear selection values

.1, with a maximum of 75 (that is, 75 times more

likely to be selected than average suitability value

throughout NLP), whereas 17.1% (857/5,006) of 9-

km2 grid cells had male bear selection values .1 with

a maximum of 39 (Fig. 3). Combined likelihood

maps for the NLP indicated that 22% of 4-km2 grid

cells represented selected habitats and 23.3% of 9-

km2 grid cells represented selected habitats for both

sexes (Fig. 4).

Discussion
We assumed that bear relocations were spatially

independent because bears can travel long distances

between successive telemetry locations (approxi-

mately 1 week). We did not rigorously test this

assumption. Swihart and Slade (1985) note that

Schoener’s ratio test may indicate location autocor-

relation, even if the locations are actually indepen-

dent, when the center of activity shifts over time.

We believe that the bears in our study shifted

their centers of activity over the multi-year duration

of the study. Therefore, having not tested for

Table 2. Median, SD, and lower (2.5%) and upper (97.5%) credibility intervals of population-level selection
parameters for covariates from the best-fit female (4-km2 resolution) and male (9-km2 resolution) American
black bear habitat selection models based on data from 1991–2000. Covariates were measured across the
northern Lower Peninsula of Michigan.

Covariates

Female, 4-km2 resolution Male, 9-km2 resolution

Median SD 2.5% 97.5% Median SD 2.5% 97.5%

Water 21.236 0.342 21.931 20.557 20.834 0.216 21.277 20.426

Slope deviation 20.314 0.198 20.709 0.074 20.327 0.183 20.691 0.032

Large road 20.323 0.174 20.674 0.020 20.034 0.151 20.341 0.258

Medium road 20.252 0.111 20.474 20.037 20.349 0.149 20.648 20.062

Small road 21.295 0.446 22.213 20.441 20.722 0.296 21.325 20.152

Human population 21.154 0.452 22.099 20.322 20.355 0.594 21.581 0.796

Number of patches 20.690 0.435 21.545 0.167 0.394 0.431 20.456 1.238

Mean patch size 23.159 0.524 24.290 22.220 21.650 0.451 22.586 20.792

Patch size coefficient of variation 20.945 0.208 21.361 20.543 20.799 0.274 21.345 20.262

Edge density 22.128 0.439 22.993 21.263 21.821 0.571 22.943 20.683

Area-weighted mean shape

index 0.658 0.148 0.368 0.949 0.361 0.211 20.048 0.781

Shannon’s diversity index 0.994 0.398 0.231 1.801 1.244 0.492 0.339 2.261

Shannon’s evenness index 20.538 0.381 21.314 0.192 21.331 0.576 22.520 20.257

Developed 27.159 1.339 29.710 24.237 28.001 1.648 210.970 24.566

Agriculture 22.879 3.149 210.390 1.992 26.696 5.595 219.380 2.324

Upland non-forested 1.762 1.719 21.881 4.987 21.559 4.049 210.710 5.447

Northern hardwood and mixed

hardwood 4.323 1.700 0.876 7.587 6.326 3.787 21.285 13.690

Oak 0.163 2.242 24.842 3.994 0.451 3.450 26.833 6.912

Aspen 4.443 1.628 1.160 7.665 6.886 3.321 0.499 13.460

Pine 2.156 2.060 22.216 5.880 4.219 3.981 24.243 11.600

Forested wetland 6.919 1.725 3.532 10.340 8.298 3.395 1.656 14.970

Non-forested wetland 28.491 4.737 220.060 21.668 28.381 4.405 219.620 22.334
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independence, it is possible that telemetry locations

were autocorrelated, which would influence param-

eter estimation and significance.

Although adjusted for unbalanced sample designs

(differing numbers of relocations for each bear),

these model results still should be interpreted

cautiously because covariate collinearity was not

explicitly accounted for in this analysis. If a set of

covariates were significantly collinear, the selection

parameter estimates may have been inflated because

of insufficient information to distinguish between

them. Additionally, standard errors of the affected

selection parameter estimates (that is, correlated

covariates) tend to be larger than if they are

uncorrelated. These effects may influence the signif-

icance of selection parameter estimates (Graham

2003). Additionally, our analysis did not identify

selection patterns separately by season or time of day

(diurnal versus nocturnal). As a result, seasonally

distinct selection patterns may have been obscured,

and variance of covariate selection parameter

estimates inflated over those from season-specific

models. Rather, parameter estimates we report

reflect overall patterns of habitat selection by the

black bear population in the Northern Lower

Peninsula in Michigan for data collected over

10 years. Furthermore, we did not have access to

night locations, but black bears may become more

nocturnal when living near human settlements

(Ayres et al. 1986, Beckmann and Berger 2003).

We believe, however, that our analyses account for

most of the variation in habitat selection because

black bears are generally diurnal (Amstrup and

Beecham 1976, Garshelis and Pelton 1980, Larivière

et al. 1994).

Model results suggest that bears in the NLP select

habitat attributes at a scale .1 km2. Bears can travel

long distances to exploit concentrated food sources

such as soft and hard mast, human refuse, and

agricultural crops (Garshelis and Pelton 1981,

Rogers 1987). The different resolutions at which

the Bayesian P was minimized for male and female

bears may reflect gender-related differences in

behavior (Gehring and Swihart 2003). Males typi-

cally travel much larger distances for mating

opportunities than females (Rogers 1987) and

probably interact with their environment at broader

scales. Male home ranges were almost 3 times larger

than female home ranges, further suggesting that

males spatially perceive and interact with their

Table 3. Median and SD of covariate selection parameters for habitat selection models across all American
black bears from the best-fit female (4-km2 resolution) and male (9-km2 resolution) models. Covariates were
measured across the northern Lower Peninsula of Michigan, and were based on data from 1991–2000.

Covariates

Female, 4-km2 resolution Male, 9-km2 resolution

Median SD Median SD

Water 20.754 0.136 20.678 0.134

Slope deviation 20.417 0.244 20.350 0.154

Large road 20.171 0.150 0.020 0.120

Medium road 20.164 0.091 20.347 0.117

Small road 20.224 0.400 20.694 0.253

Human population 20.459 0.389 0.226 0.436

Number of patches 20.318 0.417 0.389 0.264

Mean patch size 22.409 0.433 21.489 0.304

Patch size coefficient of variation 20.706 0.201 20.663 0.124

Edge density 22.455 0.466 21.189 0.404

Area-weighted mean shape index 0.484 0.139 0.256 0.124

Shannon’s diversity index 0.876 0.336 0.285 0.051

Shannon’s evenness index 20.499 0.331 20.431 0.130

Developed 24.411 0.523 26.469 1.686

Agriculture 23.067 0.736 28.032 1.923

Upland non-forested 1.619 0.611 0.525 1.367

Northern hardwood and mixed hardwood 3.217 0.645 6.687 1.170

Oak 21.290 0.820 2.081 1.387

Aspen 2.953 0.646 5.598 0.975

Pine 2.539 0.655 5.466 1.280

Forested wetland 5.587 0.564 6.919 1.012

Non-forested wetland 26.794 0.908 27.785 1.712
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surroundings differently than females. Traversing

larger areas exposes males to a larger range of

environmental attributes, which may explain greater

heterogeneity in male population-level covariate

selection. Females are more philopatric, and area

selection is dictated more by necessity to choose den

sites that reduce energy expenditure and promote

cub growth (Lindzey and Meslow 1977). These

characteristics may explain better performance of

the female model at a finer resolution than the male

model.

We summarized all environmental variables only

for the area within each grid cell. Thus, probability

of selection depended only on values of environmen-

tal variables within the grid cell and did not account

for the landscape surrounding each grid cell (e.g.,

broad scale fragmentation). It is possible to summa-

rize some variables within areas that are larger than

the output spatial grid cells using a moving window

analysis. Doing so may maintain a finer resolution

(e.g., 1 km2) while acknowledging spatial character-

istics of larger and varying sizes (i.e., multiple

Fig. 2. Boxplots of individual parameters for habitat selection models for male and female American black
bears from 1991–2000 data from the northern Lower Peninsula of Michigan, USA for (a) female 4-km2 model
categorical covariates, (b) female 4-km2 model continuous covariates, (c) male 9-km2 model categorical
covariates, and (d) male 9-km2 model continuous covariates. Boxes indicate first and third quartiles; line in
box indicates median. Lines extending from boxes represent 1.5 times the interquartile range from the
quartiles. Individual points represent outliers (.1.5 times the interquartile range from the quartiles); asterisks
represent extreme outliers (.3 times the interquartile range from the quartiles).
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window sizes). Additionally, different covariates can

be summarized at different resolutions and the effect

of varying those resolutions can be tested.

The negative relationship between population-

level bear presence and water is somewhat counter-

intuitive, but may in part be due to collinearity, in

which water bodies in the NLP are surrounded by

comparatively large human populations with devel-

opment and road networks which bears generally

avoid (Bauer 1996). We found a negative association

between population-level bear presence and medium

and small road density in the NLP. Increased road

density likely increases vehicular-related deaths and

hunter access to bears (Schwartz and Franzmann

1992); hunting is the primary source of bear

mortality in Michigan (Etter 2002). We were

surprised to find no evidence that bears avoided

large roads (interstate highways; Brody and Pelton

1989) but the density of large roads was much lower

than the other 2 categories, and sample size may

have limited our power to observe a significant

negative relationship.

At the population level, bears appear to prefer

small, similarly sized patches of various LULC

types. Diversity of land-cover types provides for a

variety of cover and food sources that bears require

to meet their seasonal needs (Kindall and van

Manen 2007). We speculate that edge density at

the broad scale, as illustrated in these models, likely

correlates with human-induced habitat fragmenta-

tion, thus explaining the negative association.

Investigation of class-level patch metrics within

forest types, instead of overall landscape patch

metrics, would provide more detail on the relative

role that human land uses and natural land covers

have on bear habitat selection.

Population-level selection of aspen land cover was

not surprising because bears often consume aspen

catkins and leaves during spring (Rogers and Allen

1987). The negative relationship we found with non-

forested wetlands at the population-level scale is

contrary to research from Colorado (Hoover and

Wills 1987), California (Grenfell and Brody 1986),

and Washington (Lyons et al. 2003), where bears

Fig. 3. Predicted likelihood of habitat selection for American black bears based on (a) 4-km2 grid cells by
female bears and (b) 9-km2 grid cells by male bears in the northern Lower Peninsula of Michigan, USA using
population-level parameter estimates from best-fit habitat selection model for each sex. Based on data
from 1991–2000.
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selected wet meadows that provided herbaceous

vegetation during spring. When collecting radiote-

lemetry data, we sometimes observed bears using the

edges of non-forested wetlands. Due to large error

associated with radiotelemetry locations, detecting

use at this finer resolution was not possible.

Human population was negatively associated with

females but not males. Bears generally select den

sites away from possible disturbance (Tietje and

Ruff 1980) and may become more nocturnal in

response to human disturbance (Ayres et al. 1986).

Area-weighted mean shape index and northern

hardwood and mixed hardwood covariates were

positively associated with females but not males.

Increases in the area-weighted mean shape index

(shape complexity) may indicate potential for escape

and refuge cover in the landscape within the complex

configurations of different patches. Black bears

prefer areas with greater escape and refuge cover

(Hugie 1979). Moreover, female bear presence was

associated with northern hardwood and mixed

hardwood communities across most of their range

in North America (Landers et al. 1979, Maehr and

Brady 1984). These communities are important for

production of hard mast and late ripening berries

essential in bear’s fall diets. Shannon’s evenness

index (0 5 clumpy, 1 5 even) was negatively

associated with males but not significantly associated

with females. This suggests that male bears demon-

strate a strong behavioral inclination to find patches

clumped together with abundant food sources. This

behavior likely conserves search energy and travel

time (Rogers 1987).

We identified 17 of 35 females and 4 of 20 males

with at least 1 outlying parameter estimate. Five of

those 17 females had relocation data concentrated in

a single region within approximately 4 km of a lake

in central Michigan. This region was dominated by

wetlands and contained every other LULC type

except human development. We interpret this to

indicate that this region supported food and cover

requirements of bears and represented high-quality

habitat. This heavily selected region also had many

patches of agricultural land nearby. It is very likely

that bears in the NLP use agricultural crops for

food. This is suggested by sightings and complaint

Fig. 4. Preferred habitat in the northern Lower Peninsula of Michigan, USA for American black bears of both
sexes at (a) 4-km2 grid cell resolution and (b) 9-km2 grid cell resolution, from 1991–2000 data. Preferred habitat
was calculated by combining areas with selection likelihoods .1 for each sex at the respective resolution.
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reports, as well as high variance in individual bear

selection parameter estimates with some bears

preferentially selecting for agricultural areas. A

similar situation was reported in coastal North

Carolina, where bears living in managed pine forests

depended heavily on crops for food from nearby

farms (Jones and Pelton 2003). Furthermore, het-

erogeneity in covariate selection, especially in males,

suggests that bears may adaptively use a variety of

habitats, including those near human land uses.

The negative correlations between bear age and

selection parameter estimates for developed land-use

and small road covariates indicated that older males

avoided these landscape features more so than

younger males. One possible explanation is that

socially dominant older males may have relegated

younger bears to marginal habitats (Gende and

Quinn 2004, Rode et al. 2006), which include a

preponderance of developed areas and small roads.

Bear hunting pressure is likely greater near small

roads, which hunters use to enter the field or run

their dogs from (J. Belant. Mississippi State Univer-

sity, Starkville, Mississippi, USA, personal commu-

nication, 2009). In contrast, younger males avoided

medium roads more so than older males. Despite

vehicular mortality, older males may be using

medium roads to traverse the landscape and secure

resources more easily (less energy required for

transit). An alternative explanation is that bears

that did not avoid medium roads died earlier, leaving

as the survivors those that did. Explicating these

relationships more fully will require additional

research that uses, among other things, bear age

information from harvest records and more rigorous

controls.

Incorporating random effects in our models

provided measures of average bear population

selection and selection variability among bears, both

of which are important sources of information for

bear managers. These measures improve our under-

standing of bear behavior and provide crucial insight

when planning for future bear range expansion.

Further, Bayesian random effects discrete-choice

models are flexible enough to rigorously test

hypotheses regarding bear–habitat relationships in

many settings.
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