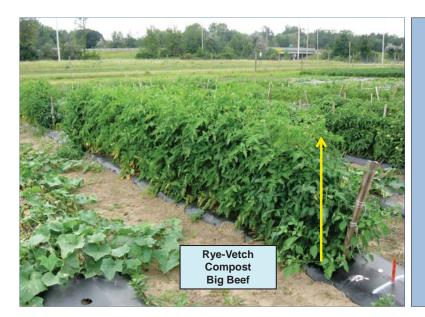
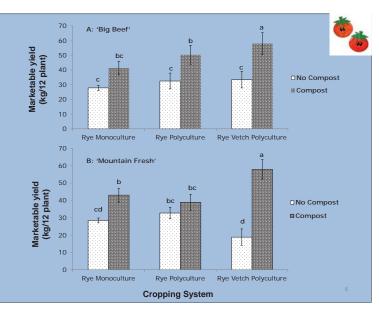
Compost for the Small and Midsize Farm

John Biernbaum Michigan State University

Participant Identification


- Compost producers or suppliers?
- Vegetable and fruit farmers?
- Field crop, forage, and grain farmers?
- Animal husbandry / manure managers?
- Others?
- Making compost on farm?
- Purchasing compost?


Motivations: Why use Compost?

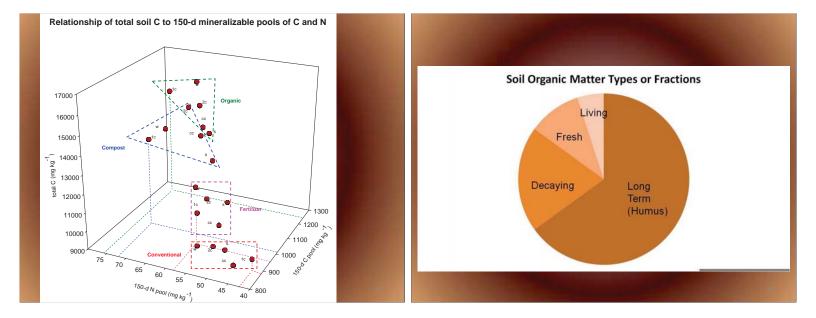
- Nutrients
- Stable Soil Organic Matter (SOM)
 Including a growing medium
- Soil Biology

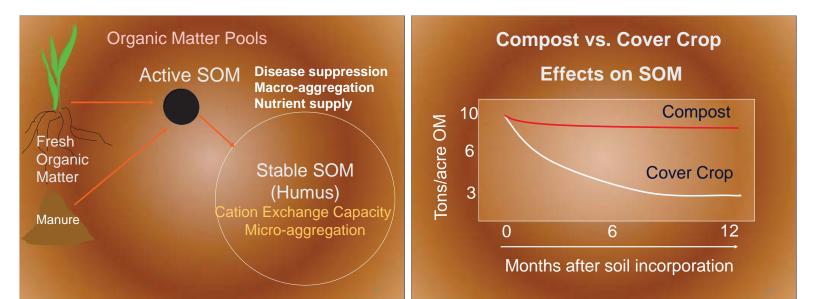
Composting as an essential Resource Management Strategy and not as a Waste Management Strategy

SOM/Compost Contributions to Chemical Properties

- Readily available nutrients (N, K, Ca, ?)
- Slowly releases nutrients (N,P,K, Ca, Mg, S)
- Micronutrients
- Soil pH
- Cation exchange capacity

Rates of Compost Application

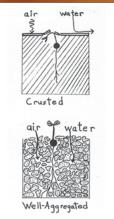

Rate	Cu yd/ acre	Ton/ acre	Cu ft/ 100 sqft	Gal/ 100 sqft	Inches deep	Lbs N (1%N)
Low	2		0.1	0.75	dusting	20
Mod	5	2.5	0.25	2	dusting	50
Mod	10	5	0.50	4	0.075 (1/16)	100
High	20	10	1.0	8	0.12 (1/8)	200

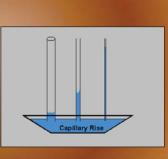

Assumes moist weight of 1000 lbs/cu yd Not exactly equivalent rates due to rounding.

Does just estimating the amount of NPK applied explain the benefits of compost?

Historically, a critical or negative portrayal of organic farming and gardening was that you can't apply enough nutrients by applying organic matter or compost so why bother (the preverbial NPK mentality). What are the additional benefits of adding compost?

Compost and Green Manure 1 +1 > 2 ? Added Benefits?


How many lbs of SOM/acre?


- Acre furrow slice = 2,000,000 lbs Soil
- 1% OM = 20,000 lbs/acre organic matter
- 1 ton of compost = 2000lbs so OM increases 10%
- 10 ton of compost = 20,000 lbs so OM doubles to 2%

Stable SOM/Compost Contributions to Physical Properties

- Increased water absorption
- Increased water retention
- Improved drought tolerance
- Reduced soil erosion
- Improved root health

Organic Matter Increases Water Absorption and Retention

From Attra Publication

Water Absorption Increases

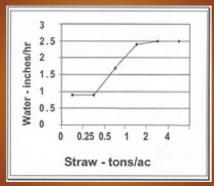


Figure 3. Effect of straw rate on water infiltration on a silt loam soil (7).

Water Retention Increases

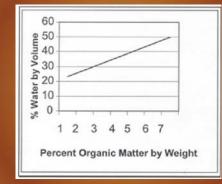
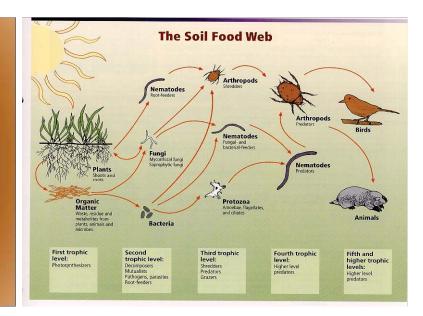
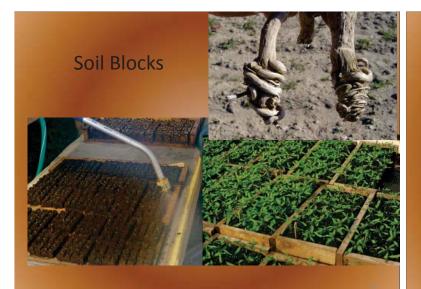



Figure 2. Available water content with increasing soil organic matter (

SOM/Compost Contributions to Physical Properties


- Rodale Institute: 1 lb of carbon can lead to 40 lbs of water held
- OM is about 40% carbon.
- So, 1% OM = 20,000 lbs OM/ 40%C =8000 lbs C x 40 lbs water/lb C = 320,000 lbs water = 40,000 gallons
- 10 ton/acre OM ~= 40,000 gallons per acre extra water holding capacity?

Compost Uses and Application

- Transplants
- High Tunnels
- Field Production
 - Higher rates
 - Lower rates

Compost Top Dressing

Compost Extracts or Tea

High Tunnels

5 gal bucket / 20 sq ft to 1 cubic foot/ 20 sq ft (7.5 gal)

5 cubic foot / 100 sq ft 3 to 4 cu yd/ 30x96 hoophouse

1

80 yd/acre or 40 ton/acre

No leaching from rain No freezing of the ground

No. of the local division of the local divis

With Manure Spreader

Factors influencing application rate include tractor speed, spreader settings and compost characteristics (moisture)

Uniform application can be a challenge, particularly at low rates. How uniform is necessary?

It is easier to see the uniformity of

compared to a field with crop residue.

For lower rates of application, lime or fertilizer application equipment may be more practical.

Distribution is influenced by the weight and moisture content of the compost.

How much does it cost to purchase and apply compost?

How does the cost of purchasing compare to the cost of making compost?

Cost Estimates and Examples

(Assumes bulk density is 1000 lbs/yd moist.)

Rate	\$ / Ton	\$ / cu yd	\$ / acre
1 ton	50	25	50
5 tons	50	25	250
10 tons	50	25	500
20 tons	50	25	1000

Composting Methods – So Many Options!

Fast or Slow? Patient or No? Cool or Hot?

Seeds or not?

Shallow Sheet or Piled Deep?

Walled Containers, Open Piles or Long & Winding Windrows?

Turned Weekly or Weakly Turned? Pitchfork or Loader or Dedicated Turner? Data from Will Brinton – Composting for Sustainability

	Cow Manure @ 120 Days		Poultry M 150			
Method	Organic Matter Nitrogen Loss Loss (%) (%)		Organic Matter Loss (%)	Nitrogen Loss (%)	Cost in \$/wet ton	
No-Turn	70	51	75	72	\$3.05	
Bucket Loader	78	60	79	76	\$6.74	
Turner at each 2 wk	73	53	79	78	\$14.34	
Turner 2x per week	80	64	88	86	\$41.23	

Pallet Compost: hay, straw, wood shavings, peat, etc – after 7 months with no turning or mixing but water has to be added.

January 2007

Pile made April 8, 2006 Picture Sept 27, 2006 6 months, no turning

1 bale of each + ~ 100 gal water Each ¼ bale absorbed about 5 gallons 160°F in 3 days (October 10, 2011)

Pear Tree Farm Transplant & Tea Mix

These components are readily available to make a very reproducible mix, low N, good fungal activity

Cleaned up with a pitch fork, heats well.

Compost Example

Material	Quantity	\$/Unit	\$ Total	Est. cu yd
straw	40 bales	\$3.00	\$120	15
wood shavings	20 bales	\$5.00	\$100	6
sphagnum peat	10 bales (3.8)	\$12.00	\$120	2.5
alfalfa hay	20 bales	\$4.00	\$80	7
grass hay	20 bales	\$3.00	\$60	7
leaf mold	8 cu yd	15	\$120	15
veg/weed "compost"	8 cu yd	10	\$80	10
field soil	8 cu yd	5	\$40	5
Total			\$720	68

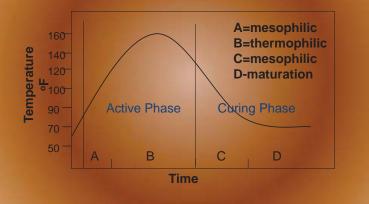
Small Batch Compost Example

Material	Lbs/cu ft (dry)	Cu ft comp/luse	Lbs	% N	Lbs N	% C	Lbs C	Cost (\$)
1 Grass hay (G)	9	5.5 / 7	40	2.0	0.8	45	18	1 @ \$3
1 Alfalfa hay (G)	9	5.5/7	50	3.0	1.5	45	23	1 @ \$4
2 Straw (B)	10	10/14	60	0.7	0.42	50	30	2 @ \$3
2 Wood Shavings (B)	15	6.5 / 16	80	0.18	0.14	55	44	2 @ \$5
2 Aged Leaves (B)	15	6.5 / 8	100	1.0	1.0	40	40	2 @ \$2
Spaghnum Peat (N)	8	3.8/6	(40)					\$10
Soil (N)	80	3.8 / 3.8	(300)					\$3
Total		42 / 62	750		3.86		154	\$40/yd

Windrows For Large Scale

Large Scale Windrows

Unfed or Molded Hay



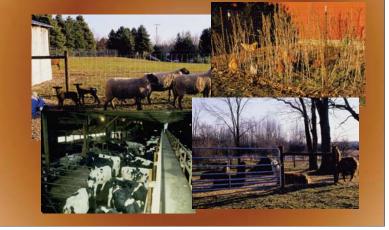
Seven Manageable Factors

- What Microbes are present
- Substrate Carbon:Nitrogen Ratio

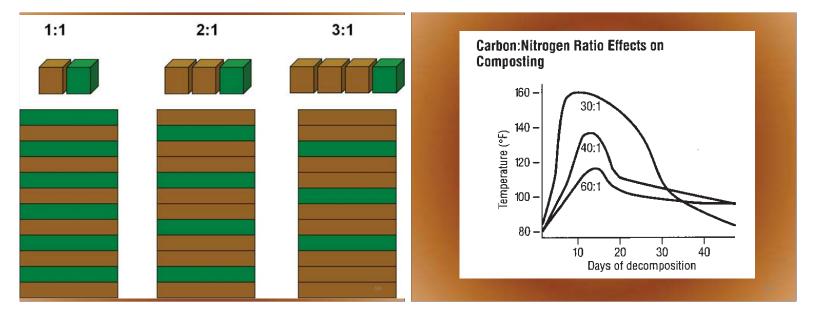
 Density (weight), moisture
 - Availability, particle size
- Oxygen (Porosity and Bulk Density)
- Moisture
- Temperature
- pH
- Time

Microbial Populations Change Over Time

Which microbes?

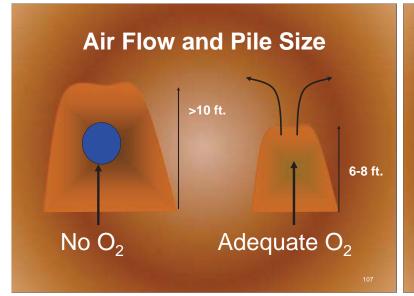

- Bacteria
- Actinomycetes
- Fungi
- Amoeba
- Protozoa
- Nematodes
- Together are the "Soil Food Web"

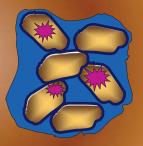
Manageable Factors and Organisms


Factor	Bacteria	Fungi		
C:N	Favored <20:1	Favored > 25:1		
Water	High Moisture	Low Moisture		
Oxygen	Survive low O ₂	Need >6%		
Temperature	Up to 170F	Most < 140F		
pН	Slow at <5	Ok at pH <5		
Time	Faster Reproduction	Slower Reproduction		

C:N of Manure Varies by Diet grass vs alfalfa vs grain

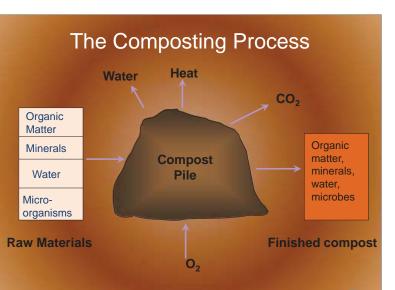
Ease with which carbon compounds are broken down:


Carbohydrates Easy
Hemicellulose
fats/oils
cellulose, chitin
lignin Hard




Adapted from T. Richard Water Content Effects on Aeration

Adequate moisture with air-filled pores


Excessive moisture with water-filled pores

Summary: Manageable Factors

- Microbes
- Carbon:Nitrogen
 - Density (weight), moisture
 - Availability, particle size
- Oxygen (Porosity and Bulk Density)
- Moisture
- Temperature
- pH
- Time

